Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ajax K. Mohamed, ${ }^{\text {a }}$ Norbert Auner ${ }^{\text {a }}$ and Michael Bolte ${ }^{b_{*}}$

${ }^{\text {a }}$ Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ${ }^{\text {b }}$ Institut für Organische Chemie, J. W. Goethe-
Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.026$
$w R$ factor $=0.052$
Data-to-parameter ratio $=22.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Redetermination of bis(N,N-diethyl-dithiocarbamato- κ S $)$ dimethyltin(IV) at low temperature

The title compound, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)_{2}\right]$, previously reported by Morris \& Schlemper [J. Cryst. Mol. Struct. (1979), 9, 13-31], has been rerefined against new intensity data. Geometric parameters agree quite well. However, the positions of the hydroxyl H atoms could be determined employing the new data. Furthermore, the results of the present structure determination are of significantly higher precision. There are one and a half molecules in the asymmetric unit. The Sn atom of one molecule is located on a twofold rotation axis, whereas all other atoms are located in general positions.

Comment

Perspective views of the title compound, (I), are shown in Figs. 1 and 2. The original structure was reported by Morris \& Schlemper (1979), who also reported a triclinic polymorph. Lockhart et al. (1986), on the other hand, determined the structure of an orthorhombic polymorph. The geometric parameters of both determinations agree quite well. A leastsquares fit between all non-H atoms gives an r.m.s. deviation of $0.044 \AA$. However, the present work is of significantly improved precision and we were able to determine the positions of the H atoms. There are one and a half molecules in the asymmetric unit. The Sn atom of one molecule is located in a twofold rotation axis, whereas all other atoms are located on general positions.

(I)

Experimental

In an effort to synthesize a macrocyclic tin complex, we added diethyltin dichloride, 2,4-pentanedione, ethylenediamine and sodium diethyl dithiocarbamate trihydrate to DMSO as solvent medium. From the product mixture we isolated suitable single crystals. However, the resulting structure was totally unexpected.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)_{2}\right]$
$M_{r}=445.28$
Monoclinic, $C 2 / \mathrm{c}$
$a=27.735$ (2) A
$b=12.3703$ (7) \AA
$c=17.8281$ (12) A
$\beta=100.829$ (6) ${ }^{\circ}$
$V=6007.7$ (7) \AA^{3}
$Z=12$
$D_{x}=1.477 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
Cell parameters from 22309 reflections
$\theta=3.5-25.2^{\circ}$
$\mu=1.68 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.22 \times 0.21 \times 0.12 \mathrm{~mm}$

Received 13 March 2003

Accepted 17 March 2003
Online 31 March 2003

Figure 1
Perspective view of molecule 1 of the title compound, showing the atom numbering and displacement ellipsoids at the 50% probability level.

Data collection

Stoe IPDS-II two-circle
diffractometer
ω scans
Absorption correction: multi-scan
(MULABS; Spek, 1990; Blessing, 1995)
$T_{\text {min }}=0.708, T_{\text {max }}=0.824$
41948 measured reflections

Refinement

Refinement on F^{2}	H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.02 P)^{2}\right]$
$w R\left(F^{2}\right)=0.052$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=0.97$	$(\Delta / \sigma)_{\max }=0.004$
5755 reflections	$\Delta \rho_{\max }=0.64 \mathrm{e} \AA^{-3}$
258 parameters	$\Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters (\AA).

Sn1-C1	$2.113(3)$	S3-C4	$1.750(3)$
Sn1-C2	$2.116(3)$	S4-C4	$1.688(3)$
Sn1-S1	$2.5207(8)$	Sn2-C13	$2.114(4)$
Sn1-S3	$2.5308(8)$	S5-C14	$1.748(3)$
S1-C3	$1.746(3)$	S6-C14	$1.688(4)$
S2-C3	$1.680(3)$		

All H atoms could be located unequivocally in a difference Fourier synthesis and were refined with fixed individual displacement

Figure 2
Perspective view of molecule 2 of the title compound, showing the atom numbering and displacement ellipsoids at the 50% probability level.
parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right.$ or $\left.1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)\right]$, using a riding model, with $\mathrm{C}-\mathrm{H}=0.99 \AA$ or methyl $\mathrm{C}-\mathrm{H}=0.98 \AA$. One curious feature of the structure is the very short $\mathrm{C} 15-\mathrm{C} 16$ bond, which at 1.356 (7) \AA is much shorter than a normal $\mathrm{CH}_{2}-\mathrm{CH}_{3}$ bond. We attribute this to a slight disorder of these atoms. It is interesting to note that the structure of Morris \& Schlemper (1979) shows the same feature.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: X - $A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Lockhart, T. P., Manders, W. F., Schlemper, E. O. \& Zuckerman, J. J. (1986). J. Am. Chem. Soc. 108, 4074-4078.
Morris, J. S. \& Schlemper, E. O. (1979). J. Cryst. Mol. Struct. 9, 13-31.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

