metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ajax K. Mohamed,^a Norbert Auner^a and Michael Bolte^b*

^aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ^bInstitut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.026 wR factor = 0.052 Data-to-parameter ratio = 22.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Redetermination of bis(*N*,*N*-diethyldithiocarbamato-*kS*)dimethyltin(IV) at low temperature

The title compound, $[Sn(CH_3)_2(C_5H_{10}NS_2)_2]$, previously reported by Morris & Schlemper [*J. Cryst. Mol. Struct.* (1979), **9**, 13–31], has been rerefined against new intensity data. Geometric parameters agree quite well. However, the positions of the hydroxyl H atoms could be determined employing the new data. Furthermore, the results of the present structure determination are of significantly higher precision. There are one and a half molecules in the asymmetric unit. The Sn atom of one molecule is located on a twofold rotation axis, whereas all other atoms are located in general positions.

Comment

Perspective views of the title compound, (I), are shown in Figs. 1 and 2. The original structure was reported by Morris & Schlemper (1979), who also reported a triclinic polymorph. Lockhart *et al.* (1986), on the other hand, determined the structure of an orthorhombic polymorph. The geometric parameters of both determinations agree quite well. A least-squares fit between all non-H atoms gives an r.m.s. deviation of 0.044 Å. However, the present work is of significantly improved precision and we were able to determine the positions of the H atoms. There are one and a half molecules in the asymmetric unit. The Sn atom of one molecule is located in a twofold rotation axis, whereas all other atoms are located on general positions.

Experimental

In an effort to synthesize a macrocyclic tin complex, we added diethyltin dichloride, 2,4-pentanedione, ethylenediamine and sodium diethyl dithiocarbamate trihydrate to DMSO as solvent medium. From the product mixture we isolated suitable single crystals. However, the resulting structure was totally unexpected.

Crystal data

$[Sn(CH_3)_2(C_5H_{10}NS_2)_2]$	$D_x = 1.477 \text{ Mg m}^{-3}$
$M_r = 445.28$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 22309
a = 27.735 (2) Å	reflections
b = 12.3703 (7) Å	$\theta = 3.5 - 25.2^{\circ}$
c = 17.8281 (12) Å	$\mu = 1.68 \text{ mm}^{-1}$
$\beta = 100.829 \ (6)^{\circ}$	T = 293 (2) K
$V = 6007.7 (7) \text{ Å}^3$	Block, colourless
Z = 12	$0.22 \times 0.21 \times 0.12 \text{ mm}$

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 13 March 2003 Accepted 17 March 2003 Online 31 March 2003

Figure 1

Perspective view of molecule 1 of the title compound, showing the atom numbering and displacement ellipsoids at the 50% probability level.

Data collection

Stoe IPDS-II two-circle	5755 independent reflections
diffractometer	3910 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.048$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.8^{\circ}$
(MULABS; Spek, 1990; Blessing,	$h = -33 \rightarrow 33$
1995)	$k = -15 \rightarrow 15$
$T_{\min} = 0.708, \ T_{\max} = 0.824$	$l = -21 \rightarrow 21$
41948 measured reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.052$ S = 0.975755 reflections 258 parameters

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.02P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.004$ $\Delta\rho_{max} = 0.64 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.45 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å).

Sn1-C1	2.113 (3)	\$3-C4	1.750 (3)
Sn1-C2	2.116 (3)	S4-C4	1.688 (3)
Sn1-S1	2.5207 (8)	Sn2-C13	2.114 (4)
Sn1-S3	2.5308 (8)	S5-C14	1.748 (3)
S1-C3	1.746 (3)	S6-C14	1.688 (4)
S2-C3	1.680 (3)		

All H atoms could be located unequivocally in a difference Fourier synthesis and were refined with fixed individual displacement

Figure 2

Perspective view of molecule 2 of the title compound, showing the atom numbering and displacement ellipsoids at the 50% probability level.

parameters $[U_{iso}(H) = 1.2U_{eq}(C) \text{ or } 1.5U_{eq}(C_{methyl})]$, using a riding model, with C-H = 0.99 Å or methyl C-H = 0.98 Å. One curious feature of the structure is the very short C15-C16 bond, which at 1.356 (7) Å is much shorter than a normal CH₂-CH₃ bond. We attribute this to a slight disorder of these atoms. It is interesting to note that the structure of Morris & Schlemper (1979) shows the same feature.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Lockhart, T. P., Manders, W. F., Schlemper, E. O. & Zuckerman, J. J. (1986). J. Am. Chem. Soc. 108, 4074–4078.
- Morris, J. S. & Schlemper, E. O. (1979). J. Cryst. Mol. Struct. 9, 13-31.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). *SHELXTL-Plus.* Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.